[bookmark: OLE_LINK1][bookmark: OLE_LINK2] (
E
xams 70-315, 70-316 and 70-320
Part

1: Introduction to C# .NET and the .NET Platform
MSAD Certification course by the European Service Centre
)

[image: Microsoft Certified IT Professional | Microsoft Certified Professional Developer]

Target audience for the series
Do you want indepth knowlage in .net development because you need if for your daily work or you want to create applications for windows, the internet or a mobile device than this cource is something for you.
This cource is geared towart having the know-how to pass the Microsoft exams 70-315, 70-316 and 70-320. This Courseware series assumes that you have little or no programming experience and starts with providing you the know-how foundation that you need to have if you want to become a professional developer.

Index
Part 1: The C# Language	5
1	An overview of the .Net framweork	6
1.1	What is .Net	6
1.2	Application Development in .Net languages	8
1.2.1	The .Net Platform	9
1.3	The .Net Languages	14
1.4	Microsoft C# .NET	14
1.4.1	Basic C# Concepts	15
1.4.2	C# Data Types	16
1.4.3	Programms and the program entry point	19
1.4.4	Declarations	20
1.4.5	Arrays	21
1.4.6	Access to your objects and functions	22
1.4.7	Scopes	22
1.5	Object-Oriented Programming Concepts	23
2	Chapter	24
2.1	Chapter	24
2.1.1	chapter	24

[bookmark: _Toc187534481]Part 1: The C# Language
In this book, you will:
· Learn about the .NET Framework
· Become familiar with the .NET languages
· Discover the environment surrounding C# .NET
· Compile your first C# program
· Learn the basics of the C# language
· Be introduced to object-oriented programming
· Learn to use abstraction and encapsulation
· Learn to differentiate between instance data and class data

If you have been around the programming world for a while, you may have some experience with languages such as Visual Basic, C++, or Java. These languages commonly provide desktop solutions, and over the years have had to expand their reach to include “enterprise” development. In order to accommodate the concepts of distributed programming, reusable software, and platform independence, languages were extended and programming structures were put into place. These additions include such things as Component Object Model (COM), Distributed Component Object Model (DCOM), Transaction servers and Application servers. Microsoft was quick to notice that a shift in development practices began with the introduction of Internet programming. The Internet needed some kind of common interface to be placed in front of the user. The software languages were struggling to provide scripted or interpreted environments that could run in a browser on every kind of platform.
If you have ever had to work with plug-ins, browser incompatibility, slow scripted languages, or out-of-date runtime environments, you will understand the difficulties that developers faced in the years before .Net was available. You will also appreciate the excitement over Microsoft’s latest offering to the world the .NET platform at it’s current release 3.5. This platform means different things to different people. For the world of network administrators, it means new service applications, such as Microsoft Exchange Server, Microsoft SQL Server, and the soon-to-be-released Microsoft .NET Servers. For Web Developers it meens Java enabled web applications without the need to script for the different brouser versions
For the development world, it means delivery of the 3rd Visual Studio .NET and its arsenal of new and old languages, as well as the Common Language Runtime (CLR). This chapter will introduce you to the .NET platform using Visual strudion in it’s latest release and explore the fundamentals of the Visual C# programming language, as well as the introductory concepts of object oriented programming (OOP). Please keep in mind that if you are an experienced OOP programmer, you may just need to skim this chapter for differences between C# and other languages, such as C++ and Java, or you may want to review the chapter as a refresher.
Whatever route you choose, there is little or nothing in this chapter that will be directly tested on the Microsoft exams. However, having said that, Microsoft assumes a working knowledge of all the concepts covered in this chapter. If you are new to OOP, you may want to spend extra time in this chapter and work outside the book a little in order to bring your skills to the level required. This series assumes that you already have an excellent grasp of the concepts that are briefly looked at in this chapter.
[bookmark: _Toc187534482]An overview of the .Net framweork
In this section, you will:
· Know the parts that make up the .Net framweork
· Understand how the frame is designed to work
· Understand what makes .Net different from other programming languages

Before one can start talking about the C# language or any .Net language, it is imperative to understand the platform upon which it works. Historically, programming using Microsoft development tools has involved the traditional Windows API, a programming interface that sits yxbetween coders and the desktop. Microsoft realized that as software progressed, APIs became complicated and corrupted by a series of updates and changes. Instead of continuing to improve upon it, Microsoft chose to completely revamp the process.
.NET introduced a brand-new development platform, called the .NET Framework, which brings together many old, familiar languages, and, of course, includes a new and exciting language, Microsoft C# .NET. and best of all, does not depend on the Windows API
[bookmark: _Toc187534483]What is .Net
.NET is huge. Microsoft has invested a great portion of its budget to researching and developing this brand-new way of doing things. It’s not just an offering to the programming world. It introduces a combined and consistent effort between operating systems, services, and programming languages. Of course, our focus will be on the .NET Framework, but in order to be conversant with the other side of .NET, here is the shortlist of elements that make up the .NET architecture:
A set of .NET languages that can be said to function in a common environment. These languages all execute in a common runtime and all make use of a common library of components. Any language can be said to be .NET-compliant if it does this. As you get more familiar with the world of programming, you will see that many vendors of programming languages want to join this ever-growing list of .NET languages. Visual Studio .NET includes a group of Microsoft-built languages that conform to the C#, VB.Net and J#, all 3 are implement the.NET standard.
A set of services provided by the .NET Enterprise Servers Over the last few years, we have watched the release of a new e-mail server, Microsoft Exchange Server; a new database server, Microsoft SQL Server 2005 as well as a whole new set of servers, such as BizTalk Server and Commerce Server releases. These servers provide the infrastructure that we will use host and manage our .NET applications and services.
A distributed application service More and more services will be accessible from the Internet, and Microsoft has been aware of this trend for a long time. As network bandwidth increases and waiting times decrease, it has become apparent that it is possible to provide real-time services through the Internet. The .NET platform makes use of XML (Extensible Markup Language) and SOAP (Simple Object Access Protocol) in order to describe and deliver data to applications anywhere in the world.
A service for .NET enabled devices These devices include hand-held computers, cell phones, game machines, and so on.
As you can see, .NET is more than just a development environment. However, the focus of this course will be just that. In the next sections, we will attempt to fight our way through the many acronyms and phrases that make up the usual descriptions of the .NET Framework. When we are done, I hope that you will have a new-found appreciation for the amount of time, work, and effort that went into making the .NET Framework the exciting offering that it is. You will also have a solid foundation for the topics that will be covered on the C# exams.

[bookmark: _Toc187534484]Application Development in .Net languages
Pardon my enthusiasm but quite simply put, .NET (from a developer’s perspective) is a relatively new runtime environment packaged together with a wealth of pre-built, ready-to-use software components. Given that, we will start talking about things like the Common Language Runtime (CLR) and the .NET Framework. The CLR is the underlying software that allows your program to run, and the .NET Framework is a library or collection of object-oriented software built for you in order to make your programming tasks easier.
Microsoft had several goals in mind when they decided to create the .NET platform:
An object-oriented code execution environment provides a consistent approach. This means that whether you code for the Internet, the local desktop, or a remote, server-based distribution centre, you will be accessing the same .NET runtime in order to execute your code.
Fully object-oriented languages are built into the .NET platform. Familiar languages, such as Visual Basic, have been extended and reworked to make them more object-oriented. C# is the new language that combines elements of Java and C++.
	[image:]
	Later in the book we will get more specific about Object Orientated Programming with classes, in part 3 we will get to the more advanced topics

In a world of Internet access and deepened security concerns, it is a challenge to securely execute code. The .NET platform includes several built-in mechanisms to ensure the code conforms to specifications, such as the Common Language Specifications (CLS). Code must also be guaranteed to be “safe” when it enters the runtime environment and, conversely, the user of the code must be authorized to use the program. We will be exploring many levels of security in the coming chapters. .NET provides developers with a heightened sense of code security.
If you have coded using dynamic-link libraries (DLLs), you will appreciate it when we tell you that this nightmare is now over. Developers have long been concerned with versioning DLLs, which are reusable software components whose references are stored in the Windows Registry. By versioning, we mean that these components, when upgraded, have to provide some backward compatibility as well as performing their new functions in the upgraded environment. Microsoft has eliminated these concerns by replacing the traditional DLL with assemblies. Versioning is built right into the assembly, and many versions can live together harmoniously.
An end user of application software is guaranteed, in this fast-paced technological world, to have the patience and the attention span of a hyperactive child. This not criticism to our audience, this is a fact. We have developed a world in which we don’t want to wait technology. To this end, the .NET Framework makes it possible to reduce the performance problems that we have experienced with languages that are scripted (VBScript, JavaScript, and the like) and languages that are interpreted at runtime (Java). Read along in this book and you will gain an understanding of how this is accomplished why this is such an important development environment for windows based devices.
If you are not excited yet, keep reading! I will be showing you how easy it is create applications that can be initiated from the Internet, as well as software that interacts with the desktop in a traditional forms manner. You will be able to create practical applications right away while you are preparing to take the Microsoft C# exams.
[bookmark: _Toc187534485]The .Net Platform
We’ve mentioned the .NET platform so often now that it’s now time to “take the cow by the horns”. Just what is the .NET platform? In this section, we will explore the architecture of the .NET platform, which is made up of the .NET Framework, the Common Language Specifications (CLS), the Common Language Runtime (CLR), Microsoft Intermediate Language (MSIL), and the Base Class Library (BCL). Once we’ve finished with that alphabet soup, we will put it all in perspective and look at how all the pieces come together to create a development platform.
The .NET Framework
 (
Figure
1
 Framework architecture
)[image:]The .NET Framework is made up of the Common Language Runtime, the Base Class Library, and services that allow you to create Web applications (ASP.NET) and Windows applications (Windows forms). If we explore the architecture, we can see how this is all put together. Figure 1 shows the overall picture, demonstrating how the .NET languages conform to the rules provided by the Common Language Specifications. These languages can all be used independently to create Web services, Web forms, or Windows forms, and can all be used with built-in data describers (XML) and data access classes (ADO.NET and SQL). Every component of the .NET Framework can take advantage of the large pre-built library of classes called the Base Class Library. Once everything is put together, the code that is created is executed in the Common Language Runtime, which is similar to (but different from) the Java Virtual Machine (JVM). You can see a very large difference in just this one point the JVM is designed to accommodate a single language (Java); but the common Language Runtime is designed to allow any .NET-compliant language to execute its code.
In the next sections will address each of these parts that make up this architecture. By understanding these parts you will be able to understand the true potential of the framework and understand the excitement .NET continues to cause in the world of software engineering
The Common Language Specifications (CLS)
In an object-oriented environment, everything is an object. (I’ll explain this a bit more in part 3.) Once you have created an object, your object needs to communicate with many other objects. These other objects may have been created in another .NET language, but that doesn’t matter, because each language adheres to the rules of the Common Language Specifications. The CLS defines such things as common variable types (this is called the Common Type System or CTS you knew there had to be an other abbreviation) common visibility (when and where can you see these variables), common method specifications, and so on. See how wonderful this is! Essentially, we are now all speaking the same language. You don’t have one rule describing how C# composes its objects and another rule describing how Visual Basic does the same thing. To steal a phrase, there is now “One rule to bind them all.”
One thing to note here is that the CLS simply provides the bare-bones rules. Languages can adhere to their own subset of the specification. In this case, the actual compilers do not need to be as powerful as those that support the full CLS. It also means that a language can add to the rules; however, if those languages interoperate with CLS-compliant code, they are not fully guaranteed to work. If you are interested in looking at the specifications, check them out at http://www.microsoft.com.

The Common Language Runtime (CLR)
Not to harp on the point, but did you notice the similarity in names: Common Language Runtime and Common Language Specifications? Common to both is the word “common.” This is not just coincidence. The days of a language needing its own environment in which to execute its code are over. All .NET-compliant languages run in a common, managed runtime execution environment.
Let’s back up a step and explore the advantages of having a common runtime environment.
Simplified development and integrated development with other languages. As a programmer in the not-so-distant past, you had to concern yourself with such things as components written in different languages, GUIDs, something called IUnknown, and other nightmares. With the CLR, you can rely on code that is accessed from different languages. This is a huge benefit. One coder can write one module in C++, and another can access and use it from Visual Basic or Object Pascal.
Safe deployment and execution Security has been a concern of Microsoft developers for many years. With the release of the .NET Framework, Microsoft has demonstrated that it has listened to these concerns and made security a top-level priority. As soon as a class is loaded into the CLR, security begins. Type safety is checked (Is it a legitimate type? Is it safe to use?), verification refuses to let an application access random memory locations, and credentials are checked, to name just a few of the security measures. .NET also introduces the concept of assemblies, in which all the pieces of the product are put together in a package that includes security information. We will be exploring security in great detail in this course, both for the Windows applications and Web applications because it’s important and it makes up of a big part of the exams.
Automatic object management. C++ and Delphi programmers will be relieved when they find out that the .NET languages take care of memory issues automatically. In the earlier OOP days, programmers had to consciously create memory space for their objects and then remember to destroy that object space when they were finished with the objects. If they did not take care of this, they created a “leaky” application that would eventually grab all of the system’s memory resources and choke the machine. With .NET, Microsoft has followed Java’s lead by making use of a garbage collector that goes through the memory heap periodically and removes those objects that are no longer in use.
Replacement of DLLs with versioned assemblies “DLL Hell” is over! The CLR uses the version information that comes packaged in an assembly to make sure that the application will load the correct component. This was a nightmare for DLL programmers, even though COM (Component Object Model) was supposed to correct most of the problems. The issue here was when your less-than-perfect component needed upgrading. Suppose someone has an application that needs the first version of your DLL, but you have installed software that has overwritten the previous version with a newer version. All of a sudden the application will stop running, since it is no longer able to access the component that it needs.
Improved performance and scalability Performance and scalability are not new issues and, despite the hype, they will always be an issue, no matter the environment. However, Microsoft has attempted to provide you with many tools to improve the performance of applications. This course will address many of these issues and provide you with tips and tricks to continue improving performance. One thing has to be told, a good .Net application will never be as fast as a good C++ or Delpy application.
Give me a Coke or a Cofee and I’ll tell you a few more benefits, however the here above points are what microsoft wants you be aware and convinced of.
The Microsoft Intermediate language (MSIL)
How can all the program languages work together you may ask. Well it’s quite simple the text you type as C# or VB.net code is “translated” into the Intermediate Language, the intermediate language is then compiled into an assembly type language.
So what happens when behind the curtains when you write the C# or a other .Net code? If you used C# you compile the source code using the C# compiler (csc.exe).
The compiler produces MSIL code. This code is similar to Java’s byte code; however, it is not interpreted code. It is compiled code that includes just-in-time (JIT) compilation, meaning that there is a significant performance improvement over Java’s byte code. Not only is there a performance improvement, but all of the .NET languages compile into MSIL code. Now, hopefully, you can see where the language interoperability comes in. The MSIL also includes metadata, which describes the types that are included in your code. This means that there is no need for type libraries or Interface Definition Language (IDL). It’s all included in the metadata.
Before the code is executed, the MSIL must be converted into platform-specific code. The CLR includes something called a JIT compiler. The combination of the metadata and MSIL code is contained in a Portable Executable (PE) file.
The code is executed on a runtime host. The runtime host includes the CLR. Runtime hosts are ASP.NET, Microsoft Internet Explorer, the desktop shell, and so on.
I guess that this is the point where I tell you that JavaScript is not going to go away; I’m pretty sure that JavaScript on the internet platform is going to become used more and more. Even you will be using Java when we make web pages, .net implements Java in quite a few elements and you don’t need to type a single line of Java code to do so.
I guess this is where I want you to feel good about your choice of development language and pup-up some comparison values:
	Feature
	.Net
	Java
	Cold Fusion MX
	PHP

	Compiled Code
	Yes
	Yes
	Yes dynamically
	No, 3rd Party tools yes

	Scripted Language results in poor website performance
	No
	No
	Somewhat
	Yes

	True OOP
	Yes
	Yes
	Somewhat
	No

	Browser Specific HTML Rendering
	Yes
	No
	No
	No

This leads us to believe that only .Net and Java are real candidates for implementing a solution so let’s compare it with a comparison provided by Sun Microsystems (home of Java) and it’s demo application Java Pet Store J2EE BluePrint Application
A team of 2 developers rebuilt the “Sun Microsystems' Java Pet Store J2EE BluePrint Application” using .Net in 4 weeks with 25% of the code. When tested in a lab, the .Net application ran %1000 faster than a tuned version of the Java application. The same Pet Store application was then rebuilt by both Microsoft and Sun for an independent competition sponsored by The Middleware Company. Here is the comparison of the results:
	
	.Net 1.1/Windows 2003
	J2EE/Windows 2000

	Lines of Code
	2’096
	14’004

	Time required for tuning and optimization prior to performance test
	2 man weeks
	10 man weeks

	Price/Performance Ratio (this is the cost per server divided by the maximum transactions per second the server could handle)
	$316
	$1’305

	Maximum Pages served per Second
	1’400
	600

	Maximum Number of Concurrent Users
	6’000
	4’000

	Maximum Number of Transactions per Second
	117
	59

	[image:]
	Each application was executed on identical Compaq Proliant servers; J2EE was tested on two Application Servers, one of which crashed midway and did not complete the test; J2EE used an Oracle 9i database while .Net used a SQL Server 2000 database; J2EE ran on Windows 2000 because it outperformed Windows 2003 and RedHat Linux 7.2 in a trial test.
The test was done with .Net 1.1 and not the latest, so it’s missing a lot of features and has quite a few more lines of code as today’s implementation would have.

The Base Class Library (BCL)
Included in the .NET Framework is the Base Class Library. The BCL is a runtime library that describes many classes that can be used in any software project. Essentially, this means that you have at your fingertips an arsenal of pre-built blueprints to assist you in your programming effort. Remember Microsoft’s goal of reducing development time? That goal is addressed in part by providing the Base Class Library.
Suppose you have to create an application that provides network communication between two computers. Your first step would be to create a socket, which is a combination of the IP address and a port number and communication stream. So you would set about creating a class file (we will get to creating classes a few pages down) that describes this process. In anticipation of this, Microsoft has created among others a Socket class within the Base Class Library. You simply add the Socket class to your project/ code and you are good to go!
	[image:]
	Chances are good that there is a “generic” class in the frame work that does what you needed to implement. What is troubling me is that no one seems to be able to tell me what’s implemented and what is not leading to “double” implementations.

The base class is mostly written in C++ making it a very preforment library. Examples of how “one can do things” and how one “should do things” in .Net will be shown later in the course proving this point.

[bookmark: _Toc187534486]The .Net Languages
In this section, you will:
· Know
There are quite a few :net languages, even COBAL has gone .Net. at the moment of writing this course ware microsoft suports:
· Microsoft C# .NET, the subject of this book.
· Microsoft VB .NET
· Microsoft C++ .NET, an extended version of Visual C++ that supportsthe .NET Framework.
· Microsoft J++, for compatibility only. It is not upgraded to .NET.
· JScript .NET.
What ever you use will make no difference as all is converted into MSILbefore it is compiles. I write what you use makes no diffrence, what you learn does; here is why I think you should learn C#:
1. All new features are implemented in C# first.
2. C# is simmilar to Java and C++ so the learning curve from or to these other languages will be easier if you are used to the C# language and coding style.
3. You need to type more characters in VB.Net than you would need to do in C#.
4. Java is not a Standart language Sun Microsystems reserves the right to change the language if it sees fit. Microsoft submitted the C# language to ECMA (European Computer Manufacturers Association) for consideration as a standard, and ECMA released the standard for C# at the end of 2001.
5. And the best argument, C# developers are paid more (+/- 15%) to do the same as the other .Net languages do.

[bookmark: _Toc187534487]Microsoft C# .NET
C# (pronounced C sharp) is the latest language in the C family of languages. C# is a modern, type-safe, simple, object-oriented language that inherits its features from the C, C++, and Java languages. Java developers will feel very much at home with C#, as will C++ developers. However, both C++ and Java developers will discover that many of the shortcomings of those languages have been eliminated in C#. You will not find pointer arithmetic or memory allocations, both of which have complicated the lives of C++ programmers for years. You will also find that the creation of the executable program is not as complicated or performance-draining as it is in the Java language.
	[image:]
	It’s not likely that you’re going to get questions out of this next section so you might want to skip this section if you’re a experienced developer and go to section 1.5 of this book.

[bookmark: _Toc187534488]Basic C# Concepts
It has been the tradition since the first book on the C language to start any text introducing a computer language with a program that prints “Hello World!” on the screen. We I will follow that tradition so here is the “Hello World!” program written in Microsoft Visual C# .NET:
	using System;
class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World");
 }
}

Lab 1: Hello World
You have this executable in your lab folder open the solution (I’ll get in to what a solution is later) by double clicking the Labs Part1.sln file and run the 01 Hello World application and you will see (if you look real fast) something like Figure 2.
[image:]
[bookmark: _Ref185143827]Figure 2: Hello World application
	Lab 1
[image:]
5 Min
	Open the Labs Part 1 solution and activate project 01-Hello World. Alter the code so that it does not say “hello world” but Hello and then your name. Proof to your self that it works by running the executable in a command window.

Now I’m supposed to make you “hard core developers” and show you how to do this with notepad… but, who needs it, you will never bother doing this for a real application or project. If you do not have Visual Studio because you thought that you had better use for that $550 to $5’500 dollar than just download the express editions for free.
In C#, everything is a class. Keep this statement in mind as you create your programs in C#. In reality, you are not creating traditional programs. Instead, you are creating classes (yes, yes you’ll get a complete explanation of classes in the “Object-Oriented Programming Concepts” section of this chapter). In the example, the line class Program is the definition of a new class called “Program.”
Every executable program must have one and only one entry point (an entry point being the start of execution). In our program, the entry point is the third line: public static int Main(). The four parts of the method Main() will be explored later in this section.
In order to print “Hello World!” on the screen, we use the System libraries (which were referred to by the using statement). All input and output is handled through a class out of this library. The object that we interact with is the Console class and the method that prints data on the console is the WriteLine() method. Or in other words The line Console.WriteLine("Hello World!"); calls the WriteLine() method of the Console class in the System library.
Congratulations! You have just “written” your first C# program. If only everything else were that simple! However, before we complicate things, let’s examine the basic concepts of C# in more detail. Again, this is just a cursory look we are assuming that you are quite familiar with these concepts and are just looking for an explanation of their handling within the C# language. The .csc compiler program produces an executable that can be executed in the context of a dos window, navigate your way to the 01-Hello Word.exe and double click it or really run it from a command window (also knows as dos) and you’ll see it works quite well.

[bookmark: _Toc187534489]C# Data Types
You can compare data types with litle bukets that hold a value of some kind and Figure 3 show a more or less compleate picture of the “who is who” in the C# world

[bookmark: _Ref185223572]Figure 3: Data Type classification hierarchy
From our perspective as developers, we can say that we have 2 data types Value Types that hold real data and Reference types that reference to an object in memory (Pointer types are “not safe” and should be avoided).
Simple Data types
A close look at the diagram shows something that you’d expect to be a mistake. Do you see the character type? The char data type and the string class both represent Unicode characters. The char is an unsigned 16-bit integer that can represent all the Unicode characters (65,535 distinct values). Let’s assume that I will not list all possible characters (and you do not want to memorise them) how can I prove that a char is an integral type? Well let’s see how we can declare variables of structured data types in memory
	bool myBoolean = false; //Boolean value Null,True,False
decimal myDecimal = 0.0m; //128-bit digits 28-29 significant digits
float myFloat = 0.0f; //32-bit float 7 digits
double myDouble = 0.0d; //64-bit float 15-16 digits
sbyte mySbyte = 0; //Signed 8-bit integer -128 to 127
byte myByte = 0; //Unsigned 8-bit integer 0-255
short myShort = 0; //Signed 16-bit integer -32,768 to 32,767
ushort myUshort = 0; //Unsigned 16-bit integer 0 to 65,535
int myInt = 0; //Signed 32 bit Integer -2,147,483,648 to 2,147,483,647
uint myUint = 0; //Unsigned 32-bit integer 0 to 4,294,967,295
long myLong = 0; //Signed 64-bit integer –9,223,372,036,854,775,808 to
 9,223,372,036,854,775,807
ulong myUlong = 0; //Unsigned 64-bit integer 0 to 18,446,744,073,709,551,615
char myZChar =(char)88;//Unicode 16-bit character U+0000 to U+ffff

Yes I agree that this must be about this “char myZChar =(char)88;” must be just about the most complicated way of assigning “Z” to a variable and experienced programmers will say, “Wait a minute you are converting the number 88 to a char so you do not store a integer, well yes however one could also convert a character to a ushort, int, uint, long, ulong, float, double, or decimal, I guess we agree that these are numbers.
Did you remember that all things in C# are objects and that all are based on the Object class? Lap 2 proves this point.
	Lab 2
[image:]
10 Min
	Open the Labs Part 1 solution and activate project 02-Declare Types. Step thrue the code and see how the data types are using some of the methods that are part of the System.Object type.

Alter the code and add the missing strucured data type. Look in books online to see how this can be assigned a value and print it, like the other values to the screen in the command window.

Referencial Data type
One of the most important data type we have is a referencial type, the string. If you where a C or C++ programmer you would become hapy now because (like with all data types) you do not have to reserve memory for it, just wack a gigabyte of text against it. There is however one issue with the String class, it must be broken! Remember that a string is a Reference type, well Microsoft went a long way to make an exception to the rule and the string class behaves like all the other simple data types. Why you might ask, well this is how strings behave in all the other programming languages[footnoteRef:2]. [2: In C++ there is a string type that is referenced via a memory address so changes would be like reference types.]

To specify a string, you can use one of two forms,quoted and @-quoted (also known as a “verbatim string”). A quoted string literal is enclosed in double quotes (") and can use the normal C-style escape sequences for newline (\n), tab (\t), and so on. The @-quoted string literal is similar to the quoted style except escape sequences are not processed. This makes the @-quoted literal very convenient for processing pathnames. Figure 4 show how one can declare a string variable including the escape characters as well as the hint of Visual studio when you make a mistake (try getting this much help this in notepad!)
[image:]
[bookmark: _Ref185303979]Figure 4: String declarations including tip text when you make an error
	Lab 3
[image:]
5 Min
	Activate the 03-String Formatting project in the Labs Part 1 solution.
Format string variable “MultiLine” so that it will print over several lines with indents after the first line
Format string variable Path1 to point to your desktop using escape character
Look in books online for an escape character that can be used to create the following output to screen: I want to “pass” my exam
you have to create the variable that holds this text and write/alter the code to output it to the screen

Reference-type variables allow us to access objects. There are two parts to a reference type,the reference variable, and the actual object itself. The reference type is declared as the type of the object that it references, as in the following declaration of a reference (myCar) to a Car object:
Car myCar;
The declaration only makes the compiler aware of what kind of object the variable myCar references. The second step is to create (or instantiate) the Car object and bind the reference to the new object. This is done by using the new keyword, which causes the constructor of the Car class to be called, and a new object of type Car to be placed on the memory heap:
Car myCar = new Car();
	[image:]
	We will get lots of practice in declaring and using classes in part 2 as well as during this course however I will continue with the other basic topics now

Variables and Constants
Not to be too simplistic, but a variable is used as a placeholder for either a value type or a reference type. When you use variables in C#, keep in mind that like Java and C++, C# it will not be initialize like stack (local) variables. All variables must be declared and initialized prior to using them. Value-type variables and reference-type variables are covered in more depth in part 2.
A constant is a special type of variable storage that cannot be changed once it is defined. Any variable can be made a constant by adding the keyword const. When a variable is marked as const, it must be initialized and cannot be modified later in the application. Figure 5 shows how constants and variables can be declared as well as the errors you get in you do not initialise them
[image:]
[bookmark: _Ref185310660]Figure 5: Constants and variable declaration incl. errors
[bookmark: _Toc187534490] (
EXE FILE
MZ and program validation (application header)
Pointers to resource strings and links to other dll files
CPU command (application body)
Resource strings (application footers)
)Programms and the program entry point
The application and library file format for windows based operating system is defined as shown in Figure 6. Why do you care I here you think as the compiler will write the file for you. Well say that you have a string in your file, this can be a resource or a variable. Well this string will be visible as clear text in the footer of the file making it a bad choice for thins you want to keep secret like passwords.
Every program needs to have one and may have only one entry point. In windows, per definition this is a static function called main().
 (
Figure
6
: Windows Executable and Library file format
)

The Main()method requires a set number of modifiers (modifiers are keywords that change how a method will be created public, private, and so on) to be approved by the compiler. The following declaration shows the most common declaration of the Main() method:

	public class myprogram
{
 public static int Main(string[] args)
 {
 return 0;
 }
}

The modifiers are:
· public Makes the method “visible” through the whole project. This is an optional modifier.
· static Makes the method available without having to create the class first. More on this later in this chapter. The Main() method must be declared as static.
· int Specifies the data type returned from the Main() method. This data type must be declared.
· string[] args Specifies a string array that will hold the command-line arguments.
The Main() method can have an integer as a return value or can have the return type set to void, which indicates that no return value is expected. Typically, if you want to return an indication of program success to the operating system, you will need to have the return type coded. The legal definitions (also called signatures) of the Main() method are as follows:
	static void Main() {…}
static int Main() {…}
static void Main(string[] args) {…}
static int Main(string[] args) {…}

A C# program terminates when the Main() method is exited and control is returned to the environment under which the program was executed. If Main() was defined to return an int, the value returned will be used as the termination status code. If the Main() method is defined to not return any termination status code (by having the return type set to void), a termination status code of 0 is returned.
[bookmark: _Toc187534491]Declarations
Unlike some other languages, C# insists that all variables have to be declared before they are used. The declaration takes a data type and the name of the variable. An optional initial value can be included with the declaration in order to have the variable initialized and declared in one operation. The following lines declare two integer variables foo and bar. In this case, foo is initialized to 42 and bar is simply declared. The declaration can contain calculations, as in the following example shows
	int foo = 42;
int bar = 12;
int foobar = foo + bar;

int Foo = 42;
int Bar;
int Foobar = Foo + Bar; //--> compile error as bar is not initialised

It is important, to initialise variables to avoid runtime errors (I guess we all know the Invalid address exception messages) and C# in.Net will not compile if you do not initialise them.
[bookmark: _Toc187534492]Arrays
Arrays are named structures that are used to store data of a particular type. For example, we can use an array to store the temperatures for each day of the month. Arrays make it easier to manipulate the data in our program. Arrays in C# can be one-dimensional or multidimensional. If you think in terms of columns and rows, this means that you can have a single column or multiple rows and columns. In fact, your multidimensional arrays can have any number of dimensions. Arrays (usually) are declared using the new keyword, indicating that arrays are classes in C#. The following line declares an array integer Array that will hold five integer members:
int[] intArray = new int[5];
Array indexes are zero based, giving us intArray[0] as the first element and intArray[4] as the fifth element (the last element) in the array.The following program creates an integer array with five elements, assigns a value to each element, and then prints them out:
	public static void Main()
{
 int[] intArray = new int[5];
 for (int i = 0; i < intArray.Length; i++)
 {
 intArray[i] = i;
 }
 Console.WriteLine("The Array contains:");
 for (int i = 0; i < intArray.Length; i++)
 {
 Console.WriteLine("intArray[{0}] = {1}", i, intArray[i]);
 }
}

Try to think of an array in C# as an object that contains a column of data. Each row in that column can contain a reference variable that “points” to another array. This is what gives the array the multidimensional effect. C# supports both rectangular and jaggededged multidimensional arrays. In a rectangular multidimensional array each element refers to another array, and each referred-to array is the same length. Jagged arrays, on the other hand, contain an array of one-dimensional arrays, each of which can be a different size. The following code shows how to declare and use a rectangular array. The statements between the brace brackets will be executed five times j will start with the value 0 and be incremented (j++) each time through the loop until it reaches 6. This results in five iterations through the loop.

[bookmark: _Toc187534493]Access to your objects and functions
In order to restrict user access to data and methods in classes that we create, we can set access modifiers on the member declarations. These modifiers create an accessibility domain, which describes the boundaries where access to a member is permitted. Accessibility of members (variables, methods, classes, and so on) can be controlled by the way the member is declared. When want to controll the accessibility of a member you create then set it; if you don’t then all objects (variables and function as well) will be considered private (the default). The below table shows the the modifiers and there meening.
	Modifier
	Meaning

	public
	Access is unlimeted

	protected
	Access is limited to the class itself or to classes that are derived (inherited) from the class.

	internal
	Accessable only to this program or library

	private
	Accessible only to the current region

	protected internal
	Access is limited to this program or types derived from the class.

Access modifiers are primaraly used to protect the internals of a class so that miss use of the class does not cause the program to behave in ways not intented. You will find access modifiers to be handy also for hiding things from other classes and help organise things by not showing you things you should not “mess” with.
[bookmark: _Toc187534494]Scopes
 (
Figure
7
 Scope layers
)[image:] (
public
I
nternal
Private
)The term scope refers to the region of a program where a named entity can be referenced directly. Scopes can be used to hide the variable and method definitions in an outer code block and to localize the use of variables. Scopes can be compared to a circle or a wall surrounding a variable, a class, or a method, for example. The circle can be of varying size, depending on how it is created. What’s inside the circle can access the variable, and what’s outside cannot.Scopes can be nested, meaning hat in the inner scope you can redefine a name from an outer scope. This is called name hiding through nesting. Scopes are defined based on the boundaries of namespaces, classes, methods, and statements. If no namespaces are declared, the scope of a named entity is the entire program.
There are potential problems related to scopes that might produce unwanted compilation errors, or even worse, logical program errors. The following example show some possible roblems with scope.
	class FoolMe
{
 int i = 12;
 void Not()
 {
 int i = 42;
 Console.WriteLine("Walter is {0} years old", i);
 }
}

A variable with the same name exists in the class visible to the function Not(). This new version of “i” is going to hide the class variable, meening that these are 2 different variables and the Not() version of “i” hides the class variable. Was this intended?
	Lab 4
[image:]
15 Min
	Start Visual studio by opening the solution file for part 1.
Activate the 04-CarClass lab
Complete the code by typing in the functionality in the code comments.The objective is to create a car class that hides and implements an engine class. Give users of the car class the possibility to start and stop the engine and show the engine status in the console window.
While you are typing use intelisence to validate if the engine class is visible or if you managed to hide it.
Remember Hit F10 to execute the program and set brake points to test the output.

[bookmark: _Toc187534495]Object-Oriented Programming Concepts
It is critical that programmers using the new .NET programming languages understand completely the concepts behind the term object oriented programing (commonly written as OOP). In everything that you design or code, you will be taking advantage of this style of programming. As a matter of fact, C# programs cannot be written without first designing a class. Although it is possible to “get by” writing code in an object-oriented environment, you should know how to properly design class and work with the key concepts of OOP, such as abstraction, encapsulation, inheritance, and polymorphism. These are not just words, these are a lifestyles in the programming world.
If you consider yourself an expert in proper class design, please skim through the rest of this chapter in order to appreciate the differences between C# and other object-oriented languages. If you are looking for a refresher in OOP, you are in the right chapter. Also, it is a given that Microsoft will expect you to be conversant in the ways of class design for the exams, so this is a great place to start. It is to your advantage to spend some time in this chapter getting comfortable with all of the concepts. A more advanced look into object-oriented programming will be done in part 3. If you are a newcomer to object-oriented technology, you may want to finish reading this chapter and then invest in other material to help you understand this very important reality of today’s programming. Whoever you are and whatever your background, OOP is here to stay. Entire operating systems (Windows 2000, Windows XP, and the new .NET Servers) are written using objects. If you want to explore the properties and capabilities of these objects, you will need to understand how an object asks another object for information. It’s not only necessary to understand these concepts for a Microsoft exam but it is essential to beable to work in the software world as all seems to become object-oriented now.
What is an object
In order to fully understand the concept of an object, allow me to paint a picture for you. Imagine that you have been given the daunting task of designing an application that will build an automobile from scratch. This particular application will be used by car manufacturers all over the world. This means that your design must be so solid and flexible that manufacturers like Ferari and Volkswagen can build a car and manufacturer cars using your application. Can you imagine coding this using a structured language? You would have to build a large library of functions, and you might find yourself duplicating large portions of your work in order to achieve the required flexibility. You might also find that you spend more time searching for functions and determining in which library they belong. You could find yourself going gray before anything of substance is actually produced.
[image: C:\Program Files\Microsoft\Visio_Pro_2003_EN\MEDIA\CAGCAT10\j0211949.wmf]Let’s step back from this picture and paint a new, object-oriented picture. You have to be able to build an Amulance as well as a race car. Instead of focusing on the differences between these two cars, examine the similarities. They both have wheels, steering mechanisms, seats, engines, windows, brakes, and so on. Breaking it down even further, the wheel must be able to rotate, has to be attached to the vehicle, and must provide features that grip the road,it doesn’t matter whether that wheel will be on an Amulance or on a race car.
[image: C:\Program Files\Microsoft\Visio_Pro_2003_EN\MEDIA\CAGCAT10\j0216858.wmf]We can also determine that the wheel must have a size, a color, and an air capacity. The nouns that describe the similarities between the two vehicles (and, in reality, the similarities of every car) are the objects that we will build into our application. We can also see that these objects must be able to do things (such as rotate, grip, and attach), and these are the verbs, or functions, of our objects. Finally, the objects have characteristics or attributes (such as size, color, and capacity), these are the properties of our object.
Imagine how powerful this is! Once we actually design and program this, anyone in the world can use our “wheel.” It doesn’t just have to be a car manufacturer. The people that create bicycles may be just as interested in our wheel as the developers of jumbo jets might be. All of these builders can use our design and build their own actual wheels. Each wheel has its own individual size, color, and capacity. The objects are, therefore, the physical creations from a design. Each may look totally different from one another but, essentially, they all have the same characteristics and capabilities.
To summarize, an object combines data (or properties) with its functionality (or methods). An object is a physical creation based on a design. We are repeating this to emphasize the design part. A class file is the design of the object. Just as a car manufacturer has a blueprint or a design in order to construct a wheel, so must our program have a blueprint that describes the properties and methods that make up an object. We will look at how to create a class later in this chapter.
[image: C:\Program Files\Microsoft\Visio_Pro_2003_EN\MEDIA\OFFICE12\AutoShap\BD18249_.wmf]Now before we leave this section, you also need to understand that these objects must be able to interact with each other. You have probably realized by now that you will also have to create the mechanism to which the wheel is attached. This means creating another design that contains properties and methods of its own. When done, we will effectively have two objects, one being a wheel, and one a wheel mechanism. The wheel may have to “ask” the wheel mechanism to “loosen a bolt.” Just as you suspected, “loosen a bolt” will be a method of the wheel mechanism. One object can request that another object perform one of its methods. This is called “sending a message” to another object. As long as the programmer has a handle for that object, the programmer can ask that object to do something that it knows how to do (perform one of its own methods).
Structs Explained
We will take a moment out from talking about classes and objects to introduce the concept of a structure, or struct. We do it in this chapter because it will be of significance in the next chapter when we discuss types. Historically, a struct was a means of creating a user-defined type by combining several types together. For example, you may wish to create an employee struct that has a first name, a last name, and a birth date. By combining several “fields” or types together, you have effectively created a new type that can be accessed as a single entity. In C#, the struct continues the tradition of being a simple user-defined type. As a matter of fact, it is very similar to a class, with the following exceptions:
· A struct does not support inheritance (a concept explained in part 3).
· A struct is a value type, not a reference type, which means that it defines a value and not an object.
· A struct is stored on the stack, not on the heap like an object. This provides for faster performance because it can be accessed directly.

Chapter header
Objective

[bookmark: _Toc187534496]Chapter
[bookmark: _Toc187534497]Chapter
[bookmark: _Toc187534498]chapter

[image:] (
MSAD Certification course by the European Service Centre
) (
26
)
[image:] (
MSAD Certification course by the European Service Centre
) (
25
)

Part 1: Introduction to C# .NET and the .NET Platform
©Walter Verhoeven, November 07, all rights reserved
Part 1: Introduction to C# .NET and the .NET Platform
©Walter Verhoeven, November 07, all rights reserved
.
.
@ 18
\n 18
\t 18
A
Access modifiers 22
internal 22
private 22
protected 22
protected internal 22
public 22
Arrays 21
B
Base Class Library 13
BCL See Base Class Library
C
Class
constructor 18
instantiate 18
CLR See Common Language Runtime
CLS See Common Language Specification
Common Language Runtime 10
Common Language Specifications 9
Common Type System 10
Constants 19
CTS see Common Type System
D
Data Types 16
Numeric Types 17
Reference Types 17
String 17
Value Types 17
Declarations 20
F
for loop 21
M
Main() 20
Microsoft Intermediate language 11
MSIL See Microsoft Intermediate Language
V
Variables 19

Predefined Types

Value Types

Struct Types

Enumeration Types

Reference Types

Object

Pointer TYpes

string

Simple Types

Bool

Numeric Types

Decimal

Floating Point Types

Integral Types

Float

double

sbyte
byte
short
ushort
int
uint
long
ulong
char

Address of Simple Type

DateTime

Interface

Deligate

Array

image3.png

image4.wmf
Framework Architecture

C#

C++

J#

VB.Net

Other

Common

Language Specifications (CLS)

Web

Service

Web

Forms

Windows

Service

Windows

Forms

Derived base classes like data and xml

Base Class Library (BCL)

Common Language Runtime (CLR)

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.wmf

image12.wmf

image13.wmf

image2.png

image14.gif

